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ABSTRACT

A pnew method is proposed to evaluate kinetic parameters from thermo-
gravimetric traces. The method consists of two steps. «, T and da/dT values are first
employed to estimate kinetic parameters by linear least squares fitting, using the five
types of mechanism for solid phase reactions suggested by Sestak. From the different
sets of parameters thus obtained, the most probable mechanism type is decided. The
resultant parameters for the chosen type of mechanism may further be improved by
differential correction method, if necessary, using the more accurate data of « and7.
The proposed method was tested with artificial data and the data for the thermai
dehydration of gypsum by Sestak et al. The results were very satisfactory.

INTRODUCTION

Many methods and modifications have been proposed to evaluate kinetic
parameters of solid phase reactions from thermogravimetric curves'~'®. Most of
them employ the simplest type of reaction mechanism, f(a) = (I —x)" and determine
the value of n by the trial-and-error method. Only a few can determine E and n
directly. Recently, Gay?° proposed a numerical quadrature method which can also
be applied to such cases. In reality, the mechanisms of solid phase reactions are very
complicated. According to Sestik?! there are five types of mechanisms which have
already been discovered. A general formula is given:

df‘-‘ = ko™ (1 —a)" [—ln (1—a)F )

where a represents degree of conversion at time 7, k is the rate constant which is a
function of absolute temperature 7. The five known types of mechanisms are m, n, p,
mn and np. In this paper an attempt is made to analyse thermogravimetric data
according to these five types. The linear least squares (LLS) method by Gay is first .
cmployed to find out the correct type of mechanism. The kinetic parameters thus
obtained are improved by applying the differential correction (DC) technique.
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THEORETICAL PART :
Takethemostcommonmechankxhtypeas an example:
d_:z= ka*(1 —a)" |

Replace k by the Arrhenius equation

dax
— = Ae H®T (1 —
dr (A ~ay

Take logarithm
lnf=1nA—5(l)+mma+nm(l—a)
dt R\T

Equaiion (4) may be written in the following form

y=ps+p:X+psz+pu

@
©)

@

)

where y, x, z and z are variables representing Indxfdr, 1/T, Ina and In (1 —a),
respectively and the p’s are constants which contain four parameters, 4, E, m and n.

The sum of squares error S is given by

S= iZl (V:—Pl—sz(—Pszr‘Ih"x)z

©

where the subscript i designates the ith data point and 7 is the number of data points

taken. The best set of parameters should meet the following conditions:

oS
— = —Z22(y;—P1—P2Xi—P3Z—Psud) =0
ap,

— = —22%:(y;—Ps — P2 Xi— P3Zi—PaU) =0
ap,

LAY :
— = —Z2Z(y;— P1—P2*1— P3Z1—Psu) =0
dps

as
— = —22u;(y;— Py — P> X;— P3Zi— Pa¥) = 0
Op. :

Q)
®)
9

(10)

All the snmmations are taken from 1 to n. From the abovc equat:ons, the following

expressions are obtained:
~ Zy;=np, +Pzzxx+P3“:zl+P‘z"1

IV = Py Zx,+ P2ZX;+ P3EXzit PaZxiuy

(11)

12



163

zzlyl = p1Zz;+ P2 Xz;x;+ s Iz 4+ paZzim; (13)
Zuyy; = py Zup+ py Supxy+ py Zupzi+ py Suf ' (14

The four constants p,, ps, p, and p, can be obtained by solving these normal
cquations simultaneously, and the four parameters, A, E, nr and n can, in turn, be
calculated. By a similar manner, kinetic parameters for the other four types of
mechanism can be evaluated. The correctness of the assumed mechanism type is
judged from the rationality of the deduced parameters. For instance, Sestik et al.?2
claimed that the value of 4 for simple decomposition reactions should not differ from
102 by more than two orders of magnitude. Once the correct mechanism type is
determined, the values of the parameters obtained above could further be improved,
because in the above method, da/dr data are employed which are secondary data;
they are less accurate than the data of « and 7. A least squares method based on « and
T is, therefore, suggested to improve the above deduced kinetic parameters. The
principle is as follows: o

Start from a general equation
%"-‘ — Ac EIRT [(g) (15)
t

The meanings of all the symbols have been defined previously. Substituting dr =d77a,
rearranging and integrate between limits, egn (15) becomes

x T
J' .ﬁ‘. = ."_lJ. e EIRT 3T (16)
of(@ aldo
where a is the heating rate. The sum of the squares error is, then, defined by
x ) Ty 2
S= zU gz _A4 c"E’"dT] (17
o f(@ alo .

Since it has been determined above that the reaction mechanism is of m, n type, then
f(a) is a function of «, m and n, and j;‘, dx/f(x) should also be a function of «, 77 and n.
Let '

% de -
- = » > = F, 1

L @ F(a;, m,n)=F,; ) (18)
and

éj Ve ERT AT = G(T;, 4, B) = G, (19)

ajo
Equation (17) becomes

- S=Z(Fi—G)® (20)

The necessary éond_itions for this sum to be a minimum are: 9S/ont =0, 3S/on=0,
68[64 =0 and 3S/GE = 0. Thus four normal equations can be established. However,
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these normal equations are non-linear; they are difficult to be solved simultaneously.
The differential correction technique is, therefore, introduced.

Let m°, n°, A° and E° be the approximate value of these parameters derived
from LLS method described above; A, An, A4 and AE be the corrections that must
be applied in order to achieve the condition of “best fit™, then

m=m"+Am an
n =n"+An (22)
A =A+AA (23)
E = E°+AE (24)

According to Taylor’s expansion

F(ax;, m, n) = F?+(Fm),Am +(Fn);An+(Fm);(An)*> +(Fn);(An)*+ ...  (25)

G(T;, A, E) = G; +(GA);AA+(GE), A E4+(GA); (AAY +(GE)}(AE)* + ... (26)

where F° = F(x;, m°, n®), G° = G(T;, A®, E®), (Fm); represents a partial derivative of
F with respect to m, (Fm)} represents the second partial derivative of F with respect
to m, then substitute in the values of m® and n°. Other functions assume a similar
meaning. If the higher powers in 4m, dn, 4A4 and 4 E are neglected, eqn (20) becomes

S = E[F(x;, m, n)—G(T;, A, )}’
= E[F; —G? +(Fm),Am +(Fn),An—(GA);AA—(GE);AE]? (o))

Now the problem has been reduced to find suoitable values of Am, An, AA and AE so
as to make S a minimum. The necessary conditions are

5%5; = 2X[F; — G} +(Fm);Am+(Fn);An—(GA);AA—(GE); AE](Fm); = 0 (28)
5‘% = 25[F? — G +(Fm),Am +(Fn);An—(GA);AA~(GE),AE](Fn), = 0 (29)
:_A__i = 23[F? — G +(Fm);Am +(Fn),An—(GA);AA~(GE),AE](GA); = 0 (30)
;—fé = 2X[F;—G; +(Fm);,Am+(Fn);An—(GA),AA—(GE); AE}(GE); = 0 (31)

These equations lead to the following expressions
Z(F; —G)(Fm);+ AmX(Fm)?+ AnZ(Fm),(Fn),— AAX(Fm);(GA),—
—AEXZ(Fm),(GE); =0 (32)
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IZ(F? - G?) (Fn)i+ AmEZ(Fn),(Fm);+ AnZ(Fn)? —AAZ(Fn),(GA);—
—AEX(Fn),(GE); =0 (33)

Z(F? - G;)(GA);+ AmE(GA),(Fm);+~AnZ(GA);(Fn),~ AAZ(GA)?—
—AEXZ(GA).(GE); =0 (34)

Z(F; - G?) (GE)i+ AmZ(GE),(Fm);+ AnXZ(GE),(Fn),~ AAX(GE),(GA), -
—AEZ(GE)? =0 (35)

These equations are linear in Am, An, AA and AE, and can readily be solved if all the
coefficients are evaluated. F°, G°, (Fm),, (Fn);,(GA),; and (GE); all involve integration.
Because there is no exact integrand for the G function and no common form for the F
function, the values of these definite integrals are evaluated by numerical integration
based on Gauss quadrature. A detailed method can be found in any standard text
book of numerical analysis. A brief procedure is presented in Appendix 1. When all
these values have been cvaluated and substituted into eqns (32) to (35), they can be
solved to get Am, An, A4 and AE values. Because the series from Taylor’s expansion
has been truncated by neglecting the second and higher order terms, solution from
above equations cannot be expected to give, at once, the best values of Am, An, A4
and AE. The values thus obtained, are combined with the originally assumed m°, n°,
A° and E” values. The procedure is repeated to obtain another set of corrections untii
the desired accuracy is acquired. Similar treatment applies to other types of
mechanisms.

TESTING OF THE METHOD

The validity of the present method was tested by artificial data and the thermo-
gravimetric data of dehydration of gypsum by Sestak et al.2>. Two sets of artificial
data were tested; both yielded satisfactory results. However, only ope set is presented
here. The data were generated using Newton and Raphson’s method and are shown
in Table 1. Kinetic parameters and the conditions used were: A=5.000x 10" sec™!,
E=26.000kcal mol™!, 2=3°Cmin~}!, f(x)=(1—2)'/’[-In(1—2)]"'. Results
obtained by LLS method are shown in Table 2. All the calculations were done by an
ICL 1904A computer. For the sake of simplicity, only two types of mechanism were
tested. From the rationality of A values, it can be concluded that the np type of
mechanism is preferable. Results obtained by DC procedure are shown in Table 3.
Parameters in count 0 were taken from the LLS method. After three counts, the
changes of parameters were very small, and the iterating procedure was terminated.
The resultant parameters agree excellently with the assumed values.

The thermogravimetric data for dehydration of gypsum by Sestik et al. have
also been used by Vachuska and Vobaril'® to verify their differential-differential
procedure and will not be reproduced here. Results obtained by the LLS method are
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TABLE 1 . . o
ARTIFICIAL DATA FOR A =5.000x 10** sec~*, E=26.000 kcal mol~*

f(x)=(1—a)*3[-In (1 —a)l‘ ', a=3"Cmin—*

a T7(X) dafds a T(K) dafdr
go—3) : (10-3 sec™ %) {10-3 (103 sec™ 1)
10 313.045 0.70 510 385.028 192 .
30 329.666 1.88 530 386.058 19.6
50 338.047 2.96 . 550 387.067 200
70 343.833 399 570 388.061 203
90 348311 497 590 389.039 20.6
110 351.991 592 610 390.004 20.8
130 353.134 683 630 390.959 21.0
150 357.888 71.71 650 391.906 212
170 360.349 8.56 670 392 846 21.3
190 362.578 9.39 690 393.782 214
210 364.622 10.2 710 394715 214
230 366.513 11.0 730 395.649 214
250 368.277 1.7 750 396.586 213
270 369.933 124 770 397.529 251.1
290 371.497 13.1 790 398.481 209
310 372.980 13.8 810 399.446 20.5
330 374.393 14.5 830 400430 20.1
350 375.744 15.1 850 . 401438 19.6
370 377.042 15.7 870 402.478 18.9
390 378.29% 163 890 403.563 18.0
410 379.497 16.9 910 404.708 16.9
430 380.665 174 930 405.940 15.5
450 381.799 179 950 407307 13.7
470 382.902 184 970 408.930 11.2
490 383.977 188 990 411.077 7.01
TABLE 2
RESULTS FROM LLS PROCEDURE FOR ARTIFICIAL DATA
f(@) A(sec™ ) E (kcal mol — %) n m P
(d—ayi—In(1—a)f 4.157x 10" 03356 —0.9895
(l —aya= 43.55 0.4823 '0.3359
TABLE 3
RESU'LTS FROM DC PROCEDURE FOR ARTIFICIAL DATA
Assume f(a) = (1 —a)*[—In (1 —a)}°.
Count A (I0'! sec™?) E (kcal mol— %) n P
1] 4.157 25.855 0.3356 —0.9895
1 4927 26.000 03333 . —1.0000
2 4.999 26.000 0.3334 —1.0000
3 4.999{ 26.000 . 03333 .~—1.0000
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TABLE 4 .
- RESULTS FROM LLS PROCEDURE FOR DEHYDRATiON OF GYPSUM

f@ A (sec™ %) E (kcal mol—%) n m P

o= 4259x10-2%  —43.862 2.5688

(—ay 5.758 % 10"! 26.820 0.9998

[—In(1—a)) 4.964 % 103 3.414x104 —1.202x 103
(1 —a) 9.665x 1012 29.152 1.033 —0.085
(d—2y[-In(1—2)) 2.467x10? —11.877 1.003 1.3645
TABLE 5

RESULTS FROM DC PROCEDURE FOR DEHYDRATION OF GYPSUM
Assume f(2) = (1 —a)".

Courit A (sec™ %) E (kcal mol—*) n

0 J5.758x10** 26,820 0.9998
1 5.807x10** 26.828 1.0004
2 5.808x 10" 26.828 1.0004
TABLE 6

COMPARISON OF RESULTS OBTAINED FROM THREE METHODS FOR
DEHYDRATION OF GYPSUM

Method A ({0 sec— 1) E (kcal mol—*) n S

Sestak et al. 5.789 26.82 0.9392 1.6x10-2
Vachuska and Voboril 5.754 26.817 1.000 2.1x10-4
Present 5.808 26.828 1.0004 3.0x10-5

shown in Table 4. All the five types of mechanism were tried. The rationality of 4
values suggests the n type of mechanism. Results obtained by the DC method are
shown in Table 5. Only two iterating procedures were required. It is concluded that
the thermal dehydration of gypsum follows the phase boundary reaction mechanism
of first order, with an activation energy of 26.8 kcal mol~ * and a frequency factor of
5.8x 10! sec™ 1. The results agree excellently with those obtained by Sestik et al
and by Vachuska and Vobaril as shown in Table 6. However, the present method
gives the smallest sum of squares error.

It is seen, from the above tests, that the proposed procedure is satxsfactory for
determining reaction mechanisms and evaluating kinetic parameters of solid phase
" reactions. Judging from the two sets of data tested, it would seem that the crum-

blesome procedure of differential correction does not play any important role in the
“ proposed method; kinetic parameters obtained by applying the LLS procedure alone
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_‘ ’aresuﬂiuenﬂyaccmate. But,asw:llbcsccnmpanll ofthlspaper theDCprocedure‘ '

does make some contribation to the accuracy of parameter evaluation. Fhe reason
that the DC procedure does not make any significant improvement of accuracy in
thcpmsenttwowssnsduetovcryhxghaccuxacyoftheda/dtdata. ' .
AppENDIX |
GAUSS QUADRATURE FOR NUMERICAL INTEGRATION

Suppose we want to integrate any function f(x) between two limits g and b
b
= I f(x)dx ' o (36)

it is first transformed into another definite integral with limits between — 1 to 1. This
is done by introducing a new variable u such that

x=d(b—a)u+i(b+a) (37)
and |
dx = Y(b—a)du (38)
It can be seen that at x =g,
=Za—b—»a=_l (39)
b—a

and at x =25,

2b—b—a
“Tha @
Hence eqn (36) becomes
_b—=a) [ o
I= 5 Llf[&(b a)u+3(b+a)]du ' (41)

Such a definite integral could be approxiated by a properly weighed sum of any .

number of particular values of p, suitably distributed between --l to 1. If we take

sixteen terms, then eqn (41) beconws o
b —a 6

I= Z (3 6—a)o;+3(b+a)lg, L (42)

whercv xstbedxscmtcahscxsaand g,is the oorrespondmg wexght ooeﬁiaent. The
—_con-mpondmgsnxtecnv ady,va!usarchstcdmAppcndlxz" '
As an illustrative example, let us consider the evaluation of thcterm(GE),
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‘Sinece
’ ' A e
G"=“I e EIRT gy 43)
: L]

a
then,

09,=25 - 2[A[" comrar]|
OE ©OE
=_éjn[—§— (e_EIRT)]dT
ajJo {OE

Te l.
= AL emrryr (44)
aRlJe T

In this case a =0, b = T}, substjtute into eqn (41), eqn (44) becomes

(GE). —_ — ;4. _Ti ! .___1___ e—EIR(Tu'2-+TdZ) du
{3 l 1} 7}
—_u + —
2 2

1
3 -ATiJ- [ 1 e-zs,mr.(uﬂ)]du ' (45)
aR j-1 L T:(u+1)

Substitute into eqn (42), we have

AT & g; _
GE), i e—2EIRTos+1) 46
(GE) = aR le Ti(v; +1) “6)

Substituting the comesponding values of v, and g, from Appendix 2, we have

AT;[ 0.0271524594 @~ 2E/1.9894009350 RT,
aR | 1.9894009350 T;

(GE); = —

0.0622535239 ¢~ 2E/1.9435750231 RT;
1.9445750231 T;

0.0271524594 e~ 2EI0-0105000650 RT.] 47
0.0105000650 T; o

The other terms can be evaluated in a similar way. There are n such (GE) values and
n values of other terms, where n is the number of experimental points.
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Mz

GAUSS'S QUADRATURE COEFFICIENTS FOR 11 = 16

J Cs &
1 0.9894009350 '0.0271524594
2 0.9445750231 0.0622535239
3 0.8656312024 0.0951585117
4 0.7554044084 0.1246239713
s 0.6178762444 0.1495959888
6 0.4580167777 0.1691565194
7 02816035508 0.1826034150
4 0.0950125098 0.1894506105
9 —0.0950125098 0.1894506105
10 —0.2816035508 0.1826034150
11 —0.4580167777 0.16915651%4
12 —0.6178762444 0.1495959888
13 —0.7554044084 0.1246289713
13 —0.8656312024 0.0951585117
15 —0.9445750231 0.0622535239
16 —0.9894009350 0.0271524594
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