
Thcnnodiimica Acra, 18 (1977) 161470 
@3 Elxvier Scientific Publishing Company. Amsterdam - Printed in Belgium 

EVALUATION OF KINETIC PARAMETERS FROM 
THERMOGRAVIMEI-RIC CURVES 

PART 1. COMBINED NUMERICAL METHOD 

DAVID ‘f. Ye CHEN AND PONG H. FONG 

ChadMy Dqaartmenr, 27u Chinese Unircrsity (Hong Kong) 

@ceived 8 March 1976) 

A new method is proposed to evaluate kinetic parameters from thermo- 
gravimetric traces, The method consists of two steps. z, T and dz/dT values are first 
employed to estimate kinetic parameters by linear least squares fitting, using the five 

types of mechanism for soIid phase reactions suggested by %st& From the different 
sets of parameters thus obtained, the most probable mechanism type is decided. The 
resultant parameters for the chosen type of mechanism may further be improved by 
differential correction method, if n ecessary, using the more accurate data of Q andT. 
The proposed method was tested with artificial data and the data for the thermai 
dehydration of gypsum by &stak et al. The results were very satisfactory. 

Many methods and modifications have been proposed to evaluate kinetic 

parameters of solid phase reactions from thermogravimetric c~rves’-‘~- Most of 

them employ the simplest type of reaction mechanism, f(z) = (I -z)” and determine 
the value of n by the trial-and-error method- Only a few can determine E and n 

directly_ Recently, Gay” proposed a numerical quadrature method which can also 
be applied to such cases, In reality, the mechanisms of solid phase reactions are very 
complicated_ According to &stikz r there are five types of mechanisms which have 
already been discovered_ A general formula is given: 

~=k~(l-~)*[-ln(l-a)]p 
l 

where a represents degree of conversion at time t, k is the rate constant which is a 
function of absolute temperature 7’._ The five known types of mechanisms are m, n, p, 
llyl and np- In this paper an attempt is made to anaiyse thermogravimetric data 
according to these five types. The linear least squares (LLS) method by Gay is first 
employed to find out the correct type of mechanism The kinetic parameters thus 

obtained are improved by applying the differential correction (DC) technique. 
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T&kthcmo6tcommonmdanismtypcasanexam~e: 

da 
- = AeeYRfC(l-ay 
dr 

(3) 

+mIna+nln(l-a) (4) 

Y = P,+Ps+P3~+lw (5) 

where y, r, z and u arc variabks representing In &/dZ, l/T, In a and In (l-a), 
I 

rcspcctnniy and thep’s arc constants which contain four parametcxs, A, E, m and n. 
ThcsumofscpareserrorSkgivenby 

as 
-= -~u~Oll-p,-p=x,-p~zr-p4u3 = 0 
ap, 
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%Yi = Pr~z~+P*~z~xi+P3Cz,2+P1~z‘~i (13) 

%Y, = F~Cu,~Pz~uixr+P3~u~Cu,s,S-p+2irf (14) 

The four constants pl, p3, pz and p4 can be obtained by solving these normal 
tquations simultaneously, and the four parameters, A,E,mandncan,intnrn,bet 
cahlatcd. By a similar manner, kinetic parameters for the other four types of 
mechanism can be evaluated. The correctness of the assumed mechanism type is 
judged from the rationality of the deduced parameters. For instance, %&.Ic et aLz2 
claimed that the value of A for simple decomposition reactions should not difI5.r from 
IO’ ’ by more than two orders of magnitude. Once the correct mechanism type is 
determined, the vaIues of the parameters obtained above could further be improved, 
because in the above method, da/df data are employed which are secondary data; 
they are less accurate than the data of cc and T. A least squares method based on Q and 
T is, therefore, suggested to improve the above deduced kinetic parameters. The 
principle is as follows: 

Start from a general equation 

dCL=Ae- 
dt 

EIRr f(a) 

The meanings of all the symbols have been defined previously- Substituting dz = dT/a, 
rearranging and integrate between limits, eqn (15) becomes 

where a is the heating rate_ The sum of the squares error is, then, defined by 

Since it has been determined above that the reaction mechanism is of M, n type, then 

f(s) is a function of 5 m and n, and fi dz/f(a) should also be a function of a, &z and n. 
Let 

ai da 

s 
-=F(q,m,n)=FI 

0 f(jc) 
w9 

and 

A T’e-E’RfdT - - 
I 

=G(&,A,E)=G, (19) 
a 0 

Equation (17) becomes 

S = C(F*- Ga+ (20) 

The necessary conditions for this sum to be a minimum are: aSiam=O, 23S/&z =O, 
aSpA = 0 and CK,,E = 0, Thus four normal equations can be established. However, 
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these normal equations are non-linear; they are difficult to be solved simultaneously_ 
The differential correction technique is, therefore, introduced- 

Let m”, no, A” and E’ be the approximate value of these parameters derived 
from LIS method described above; Am, AJZ, M and AE be the corrections that must 
be applied in order to achieve the condition of ‘best fit”, then 

m = m*+Am (21) 

n =na-f-An (22) 

A = A”+AA (23) 

E = E”i-AE (24) 

According to Taylor’s expansion 

F(q, m, n) = <+(Fm)iAm+(Fn)rAn+(Fm),‘(An)‘+(Fn)~(An)2+ .._ (25) 

G(T,, A, E)= ~+(GA)~M+(GE)~AE+(GA)~(AA)2+(GE),2(AE)2+ -_- (26) 

whcr F” = F(xr, m”, ~7, G” = G(T,, A”, E”), (Fm)i reprusents a partial derivative of 
F with respect to m, (Fm)f represents the second partial derivative of F with respect 
to m, then substitute in the values of nr” and no- Other functions assume a similar 
mean@_ If the h&her powers in dm, drr, dA and dEare ne&cted, eqn (20) becomes 

S = .X[F(ai, m, n)-G(T,, A, E)]’ 

= ~~~-~+(Fm)iA~~~+(F~);~-(GA);Ari-(GE)iA&)2 (27) 

Now the problem has been reduced to find suitable values of Am, An, AA and AEso 
as to make S a minimum. The neassaxy conditions are 

as 
- = ~C[~-G~+(F~)~A~+(F~)~AIZ-(GA),-AA-((GE)~AEJ(F~)~ = 0 (28) 
ZAm 

- = 2Z[~-~+(Fm)iAm+-(Fn)iAn-(GA)iAA-(GE),-AEf(Fn)i = 0 (29) 
i3An 

ix 
- = 2,B[~-~i(Fm)iAm+(Fn)iAn-(GA)iAA--(GE)iAE~(GA), = 0 (30) 
aAi4 

as 
- = 2Z~~-~+(Fm)iAm+(Fh)iAn-(GA)~AA--(GE)~AE](GE), = 0 (31) 
ZAE 

These equations lead to the following expressions 

Z(fl-Giq(Fm)i+AWC(Fm)~+AnZ(Fm)i(Ftr),-U~(Fm)i(GA),-- 

-A&Z(Fm)j(GE)~ = 0 (32) 
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x(<-_) (Fn);+AmX(Fn)i(Fm)i+AnI(Fn)f -AAC(Fn)j(GA)j- 

-AEC(Fn),(GE)i = 0 

Z(c-G) (GA)i+AmL-(GA)i(Fm)it AnZ(GA)i(Fn),-AAZ(GA)f- 

-AEC(GA)i(GE)~ = 0 

(33) 

(34) 

Z(G-Gf) (GE)i+AmZ(GE)i(Fm)i+AnC(GE)i(Fn)i-AAL-(GE)i(GA)i- 

-AEC(GE),z = 0 (35) 

These equations are linear in AM, An, AA and AE, and can readily be solved if all the 
coefficients are evaluated. F”, c”, (Fm)i, (F$, (GA)i and (GE)j all involve integration_ 
Because there is no exact integrand for the G function and no common form for the F 
function, the values of these definite integrals are evaluated by numerical integration 
based on Gauss quadrature_ A detailed method can be found in any standard text 
book of numerical analysis. A brief procedure is presented in Appendix l_ When all 
these vahres have been evaluated and substituted into eqns (32) to (39, they can be 
solved to get ti, An, AA and AE values. Because the series from Taylor’s expansion 
has been truncated by neglecting the second and higher order terms, solution from 
above equations cannot be expected to give, at once, the best values of Am, Au, AA 
and AE. The values thus obtained, are combined with the originally assumed nz”, n”, 
A” and E” values. The procedure is repeated to obtain another set of corrections until 
the desired accuracy is acquired_ Similar treatment applies to other types of 
mechanisms. 

TETTIMG OF IHE METHOD 

The validity of the present method was tested by artificial data and the thermo- 
_mvimetric data of dehydration of gypsum by %stik et aLz3_ Two sets of artificial 
data were tested; both yielded satisfactory results However, only one set is presented 
here. The data were generated using Newton and Raphson’s method and are shown 

in Table 1. Kinetic parameters and the conditions used were: A = 5.OfIO x IO’ ’ set- ‘, 

E=26_OOOkeal mol”, t.z=3“Cmin”, f(z)=(l-z)‘/3[-ln(I-_rlJ-1_ Results 
obtained by LLS method are shown in Table 2_ All the calculations were done by an 
ICL 1!204A computer. For the sake of simplicity, only two types of mechanism were 
tested. From the rationality of A values, it can be concluded that the np type of 
mechanism is preferable_ Results obtained by DC procedure are shown in Table 3. 
Parameters in count 0 were taken from the LLS method- After three counts, the 
changes of parameters were very small, and the iterating procedure was terminated. 
The resultant parameters agree excellently with the assumed values. 

The thermogravimetric data for dehydration of gypsum by &stak et al_ have 
also been used by Vachuska and Vobaril” to verify their differential-differential 
procedure and will not be reproduced here. Results obtained by the LLS method are 
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TABLE I 

ARTIFICIAL DATA FOR A=5.000~10*‘sar~, E=26JlOOJcaln~01-’ .’ 
f(ct)~(l--cr)‘f’[--ta(l-a)J~‘, a=3’Cmin-’ 

a 
(Jo- =) 

solar a 
(JO-= SC-~) w-3 

TW) wdf 
(IO-’ see- ‘) 

IO 313B45 OJO 510 385.028 192 _ 
30 3wB6 Ia8 530 386.058 19.6 
50 338-047 SSO 387B67 m-0 
70 343833 3-99 570 388-061 20_3 
90 348311 497 590 389.039 20.6 

110 351391 5.92 610 390-004 20s 
130 355.134 630 3ws9 216 
I50 357.888 7-71 650 391306 211 
170 360.349 8.56 670 392846 213 
190 36zs78 9.39 890 393.782 21.4 
210 364,622 102 710 394-715 21A 
230 366513 11-O 730 395-619 21.4 
250 368.277 11.7 750 396.586 213 
270 369933 124 397sw 21.1 
290 371-497 13.1 z 398481 209 
310 37zP80 13.8 810 399-446 205 
330 374393 143 830 4uO&O 20.1 
350 375.744 15_1 850 401A38 19-6 
370 3771)42 15-7 870 402478 IS-9 
390 378291 163 890 403.563 18.0 
:X0 379d497 169 910 404.708 169 
430 380-66s I7A 930 405940 15.5 
450 381.799 179 950 407-307 13.7 
470 382902 184 970 408-930 11.2 
490 383-977 188 990 41 I-077 7-01 

TABLE 2 

RESUL” FROM LLS PROCEDURE FOR ARTIFiCEAL DATA 

f(a) A@=- 3 E&nImof’l) n m p 

<I -aH-in <I -a)y 4.157x IO” 25.855 0.3356 -0,9895 
(1 -&-r 4355 7,765 0.4823 03359 

TABLE 3 

RESULTS FROM DC PROCEDURE FOR ARTIFICIAL DATA 

ksuzne f(a)=<)-#[-in (1 -a)p. 

copnr A<zo”see-*) E(kCdtld-‘) n P 

0 4157 2x85s 0.3356 -Om95 
1 0.3333 --I= 
2 4s9 0.33% -Loo00 
3 03333 .-limO _ 
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TABLE4- 

RESUL.‘lS FROM LLS PROCEDURE FOR DEHYDRATiON OF GYPSUM 

I(=> A (see- 1) E(kcalnwl-') n m P 

a= 4.259 x lo-= -43.862 2.5688 
(1 -Crr 5.758x IO” 26.820 0.9998 
c-Ln 0 -clly 4.964 x 10s 3.414 x 10’ -1.202x 103 
a-(1 -a)= 9.665 x 10’2 29,152 1.033 - 0.085 
(1 -z)q-In (1 -rrly 2467x 10-g -11.877 1.003 1.3645 

TABLE 5 

RESULTS FROM DC PROCEDURE FOR DEHYDRATION OF GYPSUM 

AssImu f(s) = (I -a)-. 

(;burir A (see ‘) E(kuz~mol-=) n 

0 5.758 x 10 * ’ 26,820 0.9998 
1 5.807x 10” 26.828 l.oooQ 
2 5.808x10” 26.828 Loow 

TABLE 6 

COMPARISON OF RESULTS OBTAINED FROM THREE MElHODS FOR 
DEHYDRATION OF GYPSUM 

Mehod A (IO’ ’ see- ‘) E(kcaImol-‘) n s 

scstik et al. 5.789 26.82 0.9392 1.6~ lo-= 
Vachuska and Voboril 5.754 26.817 l.OW 2.1 x 10-4 
Presalt 5.808 26.828 1.ooo4 3.0 x IO-6 

shown in Table 4. Ail the five types of me&an&m were tried. The rationality of A 
v&es suggests the n type of mechanism. Results obtained by the DC method are 
shown in Table 5. Only two iterating procedures were required. It is concluded that 
the thermal dehydration of gypsum foliows the phase boundary reaction mechanism 
of lirst order, with an activation energy of 26.8 kcal mol- ’ and a frequency factor of 
58x10” see- . I. The results agree excellently with those obtained by %Sk et al. 
and by Vachuska and Vobaril as shown in Table 6. However, the present method 
gives the srualIcst sum of squares error. 

It is seen, from the above tests, that the proposed procedure is satisfactory for 
determining reaction mechanisms and evaluating kinetic parameters of solid phase! 
reactions. Judging from the two sets of data tested, it wouId seem that the crum- 
blesome procedure of differential corzection does not pIay any important role in the 
proposed method; kinetic parameters obtained by applying the LLS procedure alone 
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‘aresuflidently acauafe, But,Swill be sceu*h part II of tbis’papkr, the DC pr*ure 
does ‘hake some contriiution to’the accuracy bf parameter evalqation: The &&on 
that ihc DC proccduu& does not make any si&fkant ihqkovtiment of’accuracy in 
the present two cases is due to very high aammcy of the da/dt data_ _ 

GAUSS QUADlwl-uRE HIR -CAL 1hsEGRATl0N 

Suppose we want to ix&grate any function f(x) ktween two limits a and 6 

I = *f(x)dx 
I 

(36) 
. 

it is 6rst transformed into another definite integral with limits between - I to I_ This 

is done by introducing a new variable u SIC& that 

x = *(b-a)u+f(b+a) (37) 

and 

dx = f(b-u)du 

itcanbescenthatatx=a, 

(38) 

u _ 2a-b-a - 
b-a =-I 

aud at x=b, 

2b-b-a 
Zt= 

b-a =’ 

Hence cqn (3@ becomes 

(39) 

(40 

Such a d&.&e in- cot&i be approxiated by a properly ~eigbed sum of any. 
number of particular values of D, suitably distriiuted between -1 to l- If we take 
sixtceu terms, then cqn (41) becomes 

(42) 

whek v, is the disaete aIxcisa and g, is the corresponding weight coeflkient The 
I 

comspondmgsixtecnzv,adg,valuesarelistuIiuAppem%x224_ ,.’ 

AS an ilhutrativc example, let us consider the cvqhation of the term (GE)L - 
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eeEIRT dt 
a 0 
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(43) 

then, 

= ~~~‘[-(e-EIRT)]dT 

c-w (44) 

In this Case a = 0,6 = Ti, SUb+Ute into eCJn (41), CXJQ (44) becomes 

e-EfR~Tri2~+Tr/2) & 

1 
= 

e-2EtRTi<n+ I) 1 h 
(45) 

Substitute into eqn (42), we have 

(GE)i = _ z i$I $:+ 1) e-2E~Rr~aJ* ‘1 

8 i 
(46) 

Substituting the correspondin_e values of v, and g, from Appendix 2, we have 

(GE), = 
RTg 

W622535239 e-2&/1.944575O231 RTi 

1.9445750231 q 

0_0271524594 e-2E/0.0105000650RT~ 

0.0105000650 x 1 
The other terms can be evaluated in a similar way_ There are n such (GE) values and 
n vaIues of other terms, where n is the number of experimental points. 



GAZRSS’S QUADR~URE asmFz(zNTs TOR n = 16 

I 09894009350 0.02X524594 
2 0944575023~ 0.06z535239 
3 0.86563IzO24 0B951585117 
4 0.7sm44O84 0.!2462s9713 
5 0.6178762444 0.1495959888 
6 0.4580!67777 0.1691565194 
7 0.2816035508 0.1826034150 
8 OA!9501=8 0.1894506105 
9 -0.0950125098 0.1894506103 

IO -0.2816035508 0.1826034150 
II -0.4580167777 0.!691565194 
12 -0.61787M 0.1495959888 
13 - O.?5MO440&! 0.1246289713 
14 -os6563!2024 0.0951585117 
I5 -03445750231 0.0622535239 
16 -0.9894009350 0.0271524594 
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